题目内容

【题目】如图,在ABC中,已知AB=AC,BAC和∠ACB的平分线相交于点D,ADC=125°,求∠ACB和∠BAC的度数.

【答案】ACB=70°;BAC=40°.

【解析】试题分析:根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.

试题解析:∵AB=AC,AE平分∠BAC,

∴AE⊥BC(等腰三角形三线合一),

∵∠ADC=125°,

∴∠CDE=55°,

∴∠DCE=90°﹣∠CDE=35°,

∵CD平分∠ACB,

∴∠ACB=2∠DCE=70°,

∵AB=AC,

∴∠B=∠ACB=70°,

∴∠BAC=180﹣(∠B+∠ACB)=40°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网