题目内容
【题目】如图,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于F,则OE=OF.
(1)请证明0E=OF
(2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点E在AC的延长线上,AG⊥EB,AG交 EB的延长线于 G,AG的延长线交DB的延长线于点F,其他条件不变,则仍有OE=OF.问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.
【答案】(1)证明见解析;(2)当点E在AC的延长线上时,OE=OF仍成立.
【解析】试题分析:(1)根据正方形对角线的性质可得AC⊥BD,∠OAF+∠AFO=90°,
因为AG⊥BE,所以∠EBO+∠BFG=90°,因为∠BFG=∠AFO,所以∠OAF=∠EBO,
因为∠AOF=∠BOE,AO=BO,所以△AOF≌△BOE,所以OE=OF,
(2)根据正方形对角线的性质,可得:AC⊥BD,即可求出∠OAF+∠AFO=90°,
因为AG⊥BE,所以∠BEO+∠EAG=90°,所以∠AFO=∠BEO,因为∠AOF=∠BOE,AO=BO,
所以△AOF≌△BOE,所以OE=OF.
试题解析:(1)证明:∵正方形ABCD中对角线AC、BD相交于O,
∴AC⊥BD,
∴∠OAF+∠AFO=90°,
∵AG⊥BE,
∴∠EBO+∠BFG=90°,
∵∠BFG=∠AFO,
∴∠OAF=∠EBO,
∵∠AOF=∠BOE,AO=BO,
∴△AOF≌△BOE,
∴OE=OF,
(2)解:当点E在AC的延长线上时,OE=OF仍成立,
证明:∵正方形ABCD中对角线AC,BD相交于O,
∴AC⊥BD,
∴∠OAF+∠AFO=90°,
∵AG⊥BE,
∴∠BEO+∠EAG=90°,
∴∠AFO=∠BEO,
∵∠AOF=∠BOE,AO=BO,
∴△AOF≌△BOE,
∴OE=OF.
【题目】2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:
甲 | 乙 | 丙 | |
平均货轮载重的吨数(万吨) | 10 | 5 | 7.5 |
平均每吨货物可获例如(百元) | 5 | 3.6 | 4 |
(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?
(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有艘,乙型货轮有艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?