题目内容
【题目】如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若,则=_____.
【答案】
【解析】由AB是直径,推出∠ADG=∠GCB=90°,因为∠AGD=∠CGB,推出cos∠CGB=cos∠AGD,可得,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,想办法求出DG、AG即可解决问题;
连接AD,BC.
∵AB是半圆的直径,
∴∠ADB=90°,又DE⊥AB,
∴∠ADE=∠ABD,
∵D是的中点,
∴∠DAC=∠ABD,
∴∠ADE=∠DAC,
∴FA=FD;
∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,
∴∠EDB=∠CGB,又∠DGF=∠CGB,
∴∠EDB=∠DGF,
∴FA=FG,
∵,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,
在Rt△ADE中,AD=,
∵AB是直径,
∴∠ADG=∠GCB=90°,
∵∠AGD=∠CGB,
∴cos∠CGB=cos∠AGD,
∴,
在Rt△ADG中,DG=k,
∴,
故答案为:.
练习册系列答案
相关题目