题目内容

如图所示,在平行四边形ABCD中,AE⊥BD,FC⊥BD,垂足分别为E,F.
(1)写出图中所有的全等三角形;
(2)选择(1)中的任意一对全等三角形进行证明.
(1)①△ABD≌△CDB②△ABE≌△CDF③△AED≌△CFB;

(2)①证明△ABD≌△CDB.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=CB,
∵BD=DB,
∴△ABD≌△CDB.
②证明△ABE≌△CDF.
证明:∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°.
∵ABCD是平行四边形,
∴ABCD且AB=CD.
∴∠ABE=∠CDF.
∴△ABE≌△CDF.
③证明△AED≌△CFB.
证明:∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°.
∵ABCD是平行四边形,
∴ADCB且AD=CB.
∴∠ADE=∠CBF.
∴△AED≌△CFB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网