题目内容
【题目】如图,平面直角坐标系中,A(4,4),B为y轴正半轴上一点,连接AB,在第一象限作AC=AB,∠BAC=90°,过点C作直线CD⊥x轴于D,直线CD与直线y=x交于点E,且ED=5EC,则直线BC解析式为_____.
【答案】y=﹣x+10
【解析】
过A作AM⊥y轴,交y轴于M,交CD于N,证△ABM≌△CAN,推出AN=BM,CN=AM=4,设EC=a,ED=5a,求出a=2,得出B、C的坐标,设直线BC的解析式是y=kx+10,把C(10,8)代入求出直线BC的解析式.
解:过A作AM⊥y轴,交y轴于M,交CD于N,则∠BMA=∠ANC=90°,
∵∠BAC=90°,
∴∠BAM+∠CAN=90°,∠BAM+∠ABM=90°,
∴∠ABM=∠CAN,
∵A(4,4),
∴OM=DN=4,AM=4,
在△ABM和△CAN中,
∴△ABM≌△CAN(AAS),
∴AN=BM,CN=AM=4,
∵ED=5EC,
∴设EC=a,ED=5a,
∵A(4,4),
∴点A在直线y=x上,
∵CN=4a﹣4,
则4a﹣4=4,
∴a=2,即CD=8,ED=10.
∵点E在直线y=x上,
∴E(10,10),
∴MN=10,C(10,8),
∴AN=BM=10﹣4=6,
∴B(0,10),
设直线BC的解析式是y=kx+10,
把C(10,8)代入得:k=﹣,
即直线BC的解析式是y=﹣x+10,
故答案为:y=﹣x+10.
【题目】从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显示,参与共享经济活动超6 亿人,比上一年增加约1亿人.
(1)为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是 ;
A.对某学校的全体同学进行问卷调查
B.对某小区的住户进行问卷调查
C.在全市里的不同区县,选取部分市民进行问卷调查
(2)调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.骑共享单车的人数统计表
年龄段(岁) | 频数 | 频率 |
12≤x<16 | 2 | 0.02 |
16≤x<20 | 3 | 0.03 |
20≤x<24 | 15 | a |
24≤x<28 | 25 | 0.25 |
28≤x<32 | b | 0.30 |
32≤x<36 | 25 | 0.25 |
根据以上信息解答下列问题:
①统计表中的a= ;b= ;
②补全频数分布直方图;
③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有多少人?