题目内容

【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与圆O交于点E,连结BE、DE.

(1)若圆的半径是3,∠EBA是30度,求AD的长度.
(2)求证:∠BED=∠C.
(3)若OA=5,AD=8,求切线AC的长.

【答案】
(1)解:∵∠EBA是30度,

∴∠AOF=60°,

∵OC⊥AD,

∴∠OAF=30°,AD=2AF,

∵AO=3,

∴AF=

∴AD=2AF=3


(2)解:∵AC是⊙O的切线,AB是⊙O直径,

∴AB⊥AC.

则∠1+∠2=90°,

又∵OC⊥AD,

∴∠1+∠C=90°,

∴∠C=∠2,

而∠BED=∠2,

∴∠BED=∠C


(3)解:连接BD,

∵AB是⊙O直径,

∴∠ADB=90°,

∴BD= = =6,

∴△OAC∽△BDA,

∴OA:BD=AC:DA,

即5:6=AC:8,

∴AC=


【解析】(1)利用垂径定理和圆周角定理,先求AF再求AD;(2)可连BD,构成直径所对的90度圆周角,再利用圆周角定理可转化∠C=∠2,∠BED=∠2,得出结论;(3)可证△OAC∽△BDA,利用对应边成比例求出AC.
【考点精析】通过灵活运用切线的性质定理,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网