题目内容
【题目】如图,在平面直角坐标系中,直线的解析式为,与轴、轴分别交于点、点,直线的解析式为,与轴、轴分别交于点、点,直线与交于点.
(1)求点的坐标;
(2)若直线上存在点,使得,请求出点的坐标;
(3)在轴右侧、点左侧有一条平行于轴的动直线,分别与,交于点,,轴上是否存在点,使为等腰直角三角形?若存在,请求出满足条件的所有点的坐标;若不存在;请说明理由.
【答案】(1);(2),;(3)存在.满足条件的所有点的坐标为,,.
【解析】
(1)联立与,即可求解;
(2)设点,根据,可得关于m的方程,解方程即可求解;
(3)分三种情况:①当,∠QMN=90°时,②当,∠QNM=90°时,③当,∠NQM=90°时,分别根据等腰直角三角形的性质列出方程求解即可.
解:(1)联立与得:,
∴
(2)设
∵直线的解析式为,与轴、轴分别交于点、点,
∴点C(6,0),OC=6,
∴,即
解得:或,
∴点的坐标为:或;
(3)存在,
分三种情况:①当,∠QMN=90°时,
设点Q的坐标为(0,a),则M的坐标为(a+1,a)、N的坐标为(a+1,),
∴
解得:,
∴;
②当,∠QNM=90°时,
设点Q的坐标为(0,b),则N的坐标为(6-2b,b),M的坐标为(6-2b,5-2b),
∴,
解得:,
∴;
③当,∠NQM=90°时,
设点N的坐标为(c,),则M的坐标为(c,c-1),
过作,则QT=TM=c,
∴点Q的坐标为(0,2c-1),
∵,
∴,
解得:,
∴.
综上,满足条件的所有点的坐标为,,.
练习册系列答案
相关题目