题目内容
【题目】认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题.
探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.
∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.
∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A
探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
【答案】∠BOC=∠A.
【解析】试题分析:根据提供的信息,由三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;
试题解析:解:结论:∠BOC=∠A.理由如下:
∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD.又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1.∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A,即∠BOC=∠A.
练习册系列答案
相关题目