题目内容
【题目】如图,在平面内直角坐标系中,直线l:y= x+1交x轴于点A,交y轴于点B,点A1 , A2 , A3 , …在x轴上,点B1、B2、B3 , …在直线l上.若△OB1A1 , △A1B2A2 , △A2B3A3 , …均为等边三角形,则OAn的长是( )
A.2n
B.(2n+1)
C.(2n﹣1﹣1)
D.(2n﹣1)
【答案】D
【解析】解:∵直线l:y= x+1交x轴于点A,交y轴于点B,
∴∠BOA=30°,点A(﹣ ,0).
∵△OB1A1 , △A1B2A2 , △A2B3A3 , …均为等边三角形,
∴∠AB1O=∠AB2A2=∠AB3A3=…=30°,
∴OA1=OA,OA2=OA1+AA1=3OA,OA3=OA2+AA2=7OA,OA4=OA3+AA3=15OA,…,
∴OAn=(2n﹣1)OA=(2n﹣1) .
故选D.
【题目】(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.
(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?
(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.
三角形内点的个数 | 图形 | 最多剪出的小三角形个数 |
1 | 3 | |
2 | 5 | |
3 | 7 | |
… | … | … |
(问题解决)
(1) 当三角形内有4个点时,最多剪得的三角形个数为______________;
(2) 你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加______个;
(3) 猜想:当三角形内点的个数为n时,最多可以剪得_______________个三角形;
像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.
(问题拓展)
(4)请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?