题目内容
【题目】某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:
请根据图中提供的信息,解答下面的问题:
(1)此次共调查了名学生,扇形统计图中“艺术鉴赏”部分的圆心角是度;
(2)请把这个条形统计图补充完整;
(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.
【答案】
(1)200;144
(2)解:数学思维的人数是:200﹣80﹣30﹣50=40(名),
补图如下:
(3)解:根据题意得:800× =120(名),
答:其中有120名学生选修“科技制作”项目
【解析】解:根据题意得: 调查的总学生数是:50÷25%=200(名),
“艺术鉴赏”部分的圆心角是 ×360°=144°;
故答案为:200,144;
(1)根据阅读写作的人数和所占的百分比,即可求出总学生数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出答案;(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图;(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.
【题目】某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.
(1)完成下表
甲(kg) | 乙(kg) | 件数(件) | |
A | 5x | x | |
B | 4(40﹣x) | 40﹣x |
(2)安排生产A、B两种产品的件数有几种方案?试说明理由;
(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.
【题目】某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;
信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于45件.
生产产品件数与所用时间之间的关系见下表:
生产甲产品件数(件) | 生产乙产品件数(件) | 所用总时间(分) |
10 | 10 | 500 |
15 | 20 | 900 |
信息三:按件计酬,每生产一件甲产品可得6元,每生产一件乙产品可得10元.
根据以上信息,回答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?
(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?