题目内容

【题目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图1,求证:AE=BD;
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.

【答案】
(1)证明:∵△ACB和△DCE都是等腰直角三角形,

∠ACB=∠DCE=90°,

∴AC=BC,DC=EC,

∴∠ACB+∠ACD=∠DCE+∠ACD,

∴∠BCD=∠ACE,

在△ACE与△BCD中,

∴△ACE≌△BCD(SAS),

∴AE=BD,


(2)解:∵AC=DC,

∴AC=CD=EC=CB,

△ACB≌△DCE(SAS);

由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC

∴∠DOM=90°,

∵∠AEC=∠CAE=∠CBD,

∴△EMC≌△BCN(ASA),

∴CM=CN,

∴DM=AN,

△AON≌△DOM(AAS),

∵DE=AB,AO=DO,

∴△AOB≌△DOE(HL)


【解析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;
【考点精析】本题主要考查了等腰直角三角形的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网