题目内容

【题目】如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径做⊙O分别交AC,BM于点D、E.
(1)求证:∠MDE=∠MED;
(2)填空: ①若AB=6,当DM=2AD时,DE=
②连接OD、OE,当∠C的度数为时,四边形ODME是菱形.

【答案】
(1)证明:∵∠ABC=90°,M是AC的中点,

∴BM=AM=MC,

∴∠A=∠ABM,

∵四边形ABED是圆内接四边形,

∴∠ADE+∠ABE=180°,

又∠ADE+∠MDE=180°,

∴∠MDE=∠MBA,

同理证明:∠MED=∠A,

∴∠MDE=∠MED,


(2)4;30°
【解析】(2)①4, 由(1)可知,∠A=∠MDE,
∴DE∥AB,

∵DM=2AD,
∴DM:MA=2:3,
∴DE= AB= ×6=4.
②当∠C=30°时,四边形ODME是菱形.
连接OD、OE,
∵OA=OD,∠A=60°,
∴△AOD是等边三角形,
∴∠AOD=60°,
∵DE∥AB,
∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,
∴△ODE,△DEM都是等边三角形,
∴OD=OE=EM=DM,
∴四边形OEMD是菱形.
所以答案是:(2)①4;②30°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网