题目内容
【题目】问题情境
如图 1,△ABC 中,沿∠BAC 的平分线 AB1 折叠,剪掉重叠部分;将余下部分沿∠B1A1C 的平分线 A1B2 折 叠,剪掉重叠部分;如此反复操作,沿 ∠Bn An C 的平分线 An Bn-1 折叠,点 Bn 与点 C 重合,我们就称 ∠BAC是△ABC 的正角.
以图 2 为例,△ABC 中,∠B=70°,∠C=35°,若沿∠BAC 的平分线 AB1 折叠,则∠AA1B=70°.沿 A1B1 剪掉重叠部分,在余下的△B1A1C 中,由三角形的内角和定理可知∠A1B1C=35°,若沿∠B1A1C 的平分线 A1B2 第二次折叠,则点 B1 与点 C 重合. 此时,我们就称∠BAC 是△ABC 的正角.
探究发现
(1)△ABC 中,∠B= 2∠C ,则经过两次折叠后,∠BAC 是不是△ABC 的正角? (填“是”或“不是” ) .
(2)小明经过三次折叠发现∠BAC 是△ABC 的正角,则 ∠B 与∠C (不妨设 ∠B >∠C ) 之间的等量关系 为 .
根据以上内容猜想:若经过 n 次折叠 ∠BAC 是△ABC 的正角,则∠B 与 ∠C (不妨设∠B> ∠C ) 之间 的等量关系为 .
应用提升
(3)如果一个三角形的最小角是 10°,直接写出此三角形另外两个角的度数,使得此三角形的三个角均是 它的正角.
【答案】(1)是;(2) B 3C ; B nC;(3)10°;160°
【解析】
(1)仔细分析题意根据折叠的性质及题中“正角”的定义即可作出判断;
(2)因为经过三次折叠∠BAC是△ABC的正角,所以第三次折叠的∠A2 B2C=∠C,由∠AB B1=∠AA1B1,∠AA1B1=∠A1B1C+∠C,又∠A1B1C=∠A1A2B2,∠A1A2B2=∠A2B2C+∠C,∠ABB1=∠A1B1C+∠C=∠A2B2C+∠C+∠C=3∠C,由此即可求得结果;
(3)因为最小角是10°是△ABC的正角,根据正角定义,则可设另两角分别为10m°,10mn°(其中m、n都是正整数),由题意得10m+10mn+10=180,所以m(n+1)=17,再根据m、n都是正整数可得m与n+1是17的整数因子,从而可以求得结果.
(1)∵沿∠BAC的平分线AB1折叠,
∴∠B=∠AA1B1;
又∵∠AA1B1=∠A1B1C+∠C且∠B= 2∠C
∴2∠C=∠A1B1C+∠C,得出∠C=∠A1B1C
又∵平分线A1B2
∴∠B1 A1 B2 =∠C A1 B2
∴ B1 A1 B2≌ C A1 B2
∴将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,
∴∠BAC是不是△ABC的正角
故填:是;
(2)折叠的情况如下图:
∵根据折叠的性质知:∠B=∠AA1B1,∠A1B1C=∠A1A2B2,∠C=∠A2B2C,
∴∠A1A2B2=∠C+∠A2B2C=2∠C;
∴∠AA1B1=∠A1B1C+∠C=∠A1A2B2+∠C=2∠C+∠C=3∠C
∴∠B=∠AA1B1=3∠C,即∠B=3∠C
故填:∠B=3∠C;
由折叠1次知,当∠B=∠C时,∠BAC是△ABC的正角;
由折叠2次知,当∠B=2∠C时,∠BAC是△ABC的正角;
由折叠3次知,当∠B=3∠C时,∠BAC是△ABC的正角;
故若经过n次折叠∠BAC是△ABC的正角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C
故填:∠B=n∠C;
(3)由∠B=n∠C,∠BAC是△ABC的正角,
因为最小角是10°是△ABC的正角,
根据正角定义,则可设另两角分别为10m°,10mn°(其中m、n都是正整数),
由题意,得10m+10mn+10=180,所以m(n+1)=,17,
∵m、n都是正整数,所以m与n+1是17的整数因子,
∴m=1,n+1=17,
∴m=1,n=16,
∴10m=10°,10mn=160°,
∴该三角形的另外两个角的度数分别为:10°、160°.