题目内容
【题目】如图,等腰 Rt△ABC 中,∠BAC=90°,AD⊥BC 于D,∠ABC 的平分线分别交 AC,AD 于E,F,点M 为 EF 的中点,AM 的延长线交 BC 于N,连接 DM,NF,EN.下列结论:①△AFE为等腰三角形;②△BDF≌△ADN;③NF所在的直线垂直平分AB;④DM平分∠BMN;⑤AE=EN=NC;⑥.其中正确结论的个数是( )
A.2个B.3个C.4个D.5个
【答案】D
【解析】
①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE,可判断△AEF为等腰三角形,于是可对①进行判断;求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,由题意可得BF>BD=AD,所以BFAF,所以点F不在线段AB的垂直平分线上,所以③不正确,由∠ADB=∠AMB=90°, 可知A、B、D、M四点共圆, 可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB≌△CAN, 继而可得AE=CN,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC是等腰直角三角形,继而可得AE=CN=EN,所以⑤正确;根据等腰三角形的判定可得△BAN是等腰三角形,可得BD=AB,继而可得,由⑤可得,所以⑥正确.
解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC,
∴∠BAD=∠CAD=∠C=45°,
∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC=22.5°,
∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5° ∴∠AEF=∠AFE,
∴△AEF为等腰三角形,所以①正确;
∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE= ∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,AM⊥BE,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,
在△FBD和△NAD中,
∠FBD=∠DAN ,BD=AD ,∠BDF=∠ADN ,
∴△FBD≌△NAD,所以②正确;
因为BF>BD=AD,
所以BFAF,
所以点F不在线段AB的垂直平分线上,所以③不正确
∵∠ADB=∠AMB=90°,
∴A、B、D、M四点共圆,
∴∠ABM=∠ADM=22.5°,
∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,
∴DM平分∠BMN ,所以④正确;
在△AFB和△CNA中,
∠BAF=∠C=45°,AB=AC, ∠ABF=∠CAN=22.5°,
∴△AFB≌△CAN(ASA),
∴AF=CN,
∵AF=AE,
∴AE=CN,
∵AE=AF,FM=EM,
∴AM⊥EF,
∴∠BMA=∠BMN=90°,
∵BM=BM,∠MBA=∠MBN,
∴△MBA≌△MBN,
∴AM=MN,
∴BE垂直平分线段AN,
∴AB=BN,EA=EN,
∵BE=BE,
∴△ABE≌△NBE,
∴∠ENB=∠EAB=90°,
∴EN⊥NC.
∴△ENC是等腰直角三角形,
∴AE=CN=EN,所以⑤正确;
∵AF=FN,
所以∠FAN =∠FNA,
因为∠BAD =∠FND=45°,
所以∠FAN+ ∠BAD =∠FNA+∠FND,
所以∠BAN =∠BNA,
所以AB=BN,
所以,
由⑤可知,△ENC是等腰直角三角形,AE=CN=EN,
∴,
所以,所以⑥正确,
故选D.