题目内容
【题目】如图,在△AOB中,OA=OB,点C为AB的中点,AB=16,以点O为圈心,6为半径的圆经过点C,分别交OA、OB于点E、F.
(1)求证:AB为⊙O的切线;
(2)求图中阴影部分的面积.(注:结果保留π,sin37°=0.6,cos37°=0.8,tan37°=0.75)
【答案】(1)证明见解析(2)48-
【解析】
(1)连接OC,由OA=OB,C是边AB的中点,根据三线合一的性质可得OC⊥AB,即可可证得AB与⊙O相切;(2)根据图中阴影部分的面积=S△AOB﹣S扇形EOF即可求解.
(1)证明:连接OC,如图,
∵OA=OB,点C为AB的中点,
∴OC⊥AB,
∴AB为⊙O的切线;
(2)解:∵OC⊥AB,
∴AC=BC=AB=8,
在Rt△AOC中,tanA===0.75,
∴∠A=37°,
∴∠AOB=180°﹣2×37°=106°,
∴图中阴影部分的面积=S△AOB﹣S扇形EOF=×16×6﹣=48﹣π.
【题目】甲、乙两城市为了解决空气质量污染问题,对城市及其周边的环境污染进行了综合治理.在治理的过程中,环保部门每月初对两城市的空气质量进行监测,连续10个月的空气污染指数如图1所示.其中,空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.
(1)请填写下表:
平均数 | 方差 | 中位数 | 空气质量为优的次数 | |
甲 | 80 | |||
乙 | 80 | 1060 |
(2)请回答下面问题
①从平均数和中位数来分析,甲,乙两城市的空气质量.
②从平均数和方差来分析,甲,乙两城市的空气质量情况.
③根据折线图上两城市的空气污染指数的走势及优的情况来分析两城市治理环境污染的效果.
【题目】某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘制成如图频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:
分组 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合计 |
频数 | 2 | a | 20 | 16 | 4 | 50 |
频率 | 0.04 | 0.16 | 0.40 | 0.32 | b | 1 |
(1)频数、频率分布表中a= ,b= ;(答案直接填在题中横线上)
(2)补全频数分布直方图;
(3)若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.
【题目】小华有一个容量为8GB (1GB= 1024MB)的U盘,U盘中已经存储了一个视频文件,其余空间都用来存储照片,若每张照片占用的内存容量均相同,图片数量x (张)和剩余可用空间y (MB)的部分关系如表:
图片数量 | 100 | 150 | 200 | 400 | 800 |
剩余可用空间 | 5700 | 5550 | 5400 | 4800 | 3600 |
(1)由上表可知,y与x之间满足___ ___(填“一次”或“二次”或“反比例”)函数的关系,求出y与x之间的关系式.
(2)求出U盘中视频文件的占用内存容量.