题目内容
【题目】已知△ABC是等边三角形,点P是平面内一点,且四边形PBCD为平行四边形,将线段CD绕点C逆时针旋转60°,得到线段CF
(1)如图1,当P为AC的中点时,求证:FC⊥PD.
(2)如图2,当P为△ABC内任一点时,连接PA、PF、AF,试判断△PAF的形状,并证明你的结论.
(3)当B、P、F三点共线且AB=,PB=3时,求PA的长.
【答案】(1)见解析;(2)△PAF是等边三角形,证明见解析;(3)PA的长为2或5.
【解析】
(1)如图1,利用等边三角形和平行四边形的性质求得∠FCD+∠D=90°即得结论;
(2)△PAF是等边三角形.如图2,延长BC,先利用等边三角形的性质和平行四边形的性质证得∠2=∠4,再根据SAS证明△ABP≌△ACF,进一步根据等边三角形的判定定理即可证得结论;
(3)需要分类讨论:当点P在线段BF上和当点P落在线段FB的延长线上两种情况,通过作辅助线,构造直角三角形,再结合勾股定理即可求出结果.
(1)证明:如图1,设FC、PD交于点M,
∵△ABC是等边三角形,P为AC的中点,
∴∠PBC=∠ABC=×60°=30°,
∵四边形PBCD为平行四边形,
∴∠D=∠PBC=30°.
∵∠FCD=60°,
∴∠FCD+∠D=90°,
∴∠CMD=90°,
∴FC⊥PD;
(2)△PAF是等边三角形,理由如下:
如图2,延长BC,∵△ABC为等边三角形,
∴AB=AC,∠ABC=∠ACB=60°,
∴∠2=60°﹣∠1,∠4=180°﹣60°﹣60°﹣∠3=60°﹣∠3.
∵四边形PBCD是平行四边形,
∴PB∥CD,PB=CD=FC.
∴∠1=∠3,∴∠2=∠4.
又AB=AC,PB=FC,
∴△ABP≌△ACF(SAS).
∴AP=AF,∠BAP=∠CAF.
∵∠BAP+∠PAC=60°,
∴∠PAC+∠CAF=∠PAF=60°,
∴△PAF是等边三角形;
(3)①当点P在线段BF上时,如图3,过A作AE⊥BF于E,由(2)可得∠APF=60°,
设PE=x,则AE=x,
于是在Rt△ABE中,根据勾股定理得:,
解得:x1=1,x2=(不合题意,舍去)
∴PA=2x=2;
②当点P落在线段FB的延长线上时,如图4,过B作BE⊥PA于E,
则在Rt△PBE中,PB=3,由(2)可得∠BPE=60°,∴∠PBE=30°.
∴PE=,BE=.
在Rt△ABE中,AB=,BE=,∴AE=,
∴PA=PE+AE=5.
由于P点不可能在线段BF的延长线上,所以, PA的长为2或5.