题目内容
【题目】如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
【答案】(1)y=﹣2x2+4x+6;(2)S△PBC=﹣3m2+9m(0<m<3);(3)M(1,8),N(0,)或M(
,
),N(0,
)或M(
,
),N(0,
)或M(3,0),N(0,﹣
)
【解析】
(1)根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;
(2)过点P作PF∥y轴,交BC于点F,利用二次函数图象上点的坐标特征可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),进而可得出PF的长度,利用三角形的面积公式可得出S△PBC=﹣3m2+9m,配方后利用二次函数的性质即可求出△PBC面积的最大值;
(3)分两种不同情况,当点M位于点C上方或下方时,画出图形,由相似三角形的性质得出方程,求出点M,点N的坐标即可.
(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,
得:,解得:
,
∴抛物线的解析式为y=﹣2x2+4x+6.
(2)过点P作PF∥y轴,交BC于点F,如图1所示.
当x=0时,y=﹣2x2+4x+6=6,
∴点C的坐标为(0,6).
设直线BC的解析式为y=kx+c,
将B(3,0)、C(0,6)代入y=kx+c,得:
,解得:
,
∴直线BC的解析式为y=﹣2x+6.
设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),
∴PF=﹣2m2+4m+6﹣(﹣2m+6)=﹣2m2+6m,
∴,
∴当时,△PBC面积取最大值,最大值为
.
∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,
∴0<m<3.
(3)存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似.
如图2,∠CMN=90°,当点M位于点C上方,过点M作MD⊥y轴于点D,
∵∠CDM=∠CMN=90°,∠DCM=∠NCM,
∴△MCD∽△NCM,
若△CMN与△OBC相似,则△MCD与△NCM相似,
设M(a,﹣2a2+4a+6),C(0,6),
∴DC=﹣2a2+4a,DM=a,
当 时,△COB∽△CDM∽△CMN,
∴ ,
解得,a=1,
∴M(1,8),
此时,
∴N(0,),
当时,△COB∽△MDC∽△NMC,
∴ ,
解得 ,
∴M(,
),
此时N(0,).
如图3,当点M位于点C的下方,
过点M作ME⊥y轴于点E,
设M(a,﹣2a2+4a+6),C(0,6),
∴EC=2a2﹣4a,EM=a,
同理可得:或
,△CMN与△OBC相似,
解得或a=3,
∴M(,
)或M(3,0),
此时N点坐标为,N(0,)或N(0,﹣
).
综合以上得,M(1,8),N(0,)或M(
,
),N(0,
)或M(
,
),,N(0,
)或M(3,0),N(0,﹣
),使得∠CMN=90°,且△CMN与△OBC相似.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某校团委为了解该校七年级学生最喜欢的课余活动情况,采用随机抽样的方法进行了问卷调查,被调查学生必须从“运动、娱乐、阅读、其他”四项中选择其中的一项,以下是根据调查结果绘制的统计图表的一部分,
活动类型 | 频数(人数) | 频率 |
运动 | 20 | |
娱乐 | 40 | |
阅读 | ||
其他 | 0.1 |
根据以上图表信息,解答下列问题:
(1)在被调查的学生中,最喜欢“运动”的学生人数为 人,最喜欢“娱乐”的学生人数占被调查学生人数的百分比为 %.
(2)本次调查的样本容量是 ,最喜欢“其他”的学生人数为 人.
(3)若该校七年级共有360名学生,试估计最喜欢“阅读”的学生人数.
【题目】九年级数学小组经过市场调查,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:
售价x(元/件) | 120 | 160 | 190 |
月销售量y(件) | 260 | 180 | 120 |
月销售利润w(元) | 5200 | 10800 | 10800 |
注:月销售利润月销售量×(售价
进价)
(1)求y关于x的函数解析式(不要求写出自变量的取值范围).
(2)求当售价为多少元时,月销售利润最大,并求最大利润是多少?
(3)由于某种原因,该商品进价降低了m元/件,商家规定该运动服售价不得低于180元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是14000元,求m的值.