题目内容
【题目】随着天气的逐渐炎热(如图1),遮阳伞在我们的日常生活中随处可见如图2所示,遮阳伞立柱OA垂直于地面,当将遮阳伞撑开至OD位置时,测得∠ODB=45°,当将遮阳伞撑开至OE位置时,测得∠OEC=30°,且此时遮阳伞边沿上升的竖直高度BC为20cm,求若当遮阳伞撑开至OE位置时伞下阴凉面积最大,求此时伞下半径EC的长.(结果保留根号)
【答案】20()cm
【解析】
根据题意可得OE=OD,由三角函数得出OC=OE,OB=,再利用BC=OB﹣OC解答即可.
解:由题意可得:OE=OD,
在Rt△OEC中,∠BOE=60°,∠OCE=90°,
∴OC=OE,
在Rt△OBD中,∠DOB=45°,∠OBD=90°,
∴OB=OD=OE,
∵BC=OB﹣OC,
即,OE﹣OE=20
解得:OE=40(+1)cm,
∴EC=×20(+1)=20()cm.
练习册系列答案
相关题目
【题目】某市对即将参加中考的4000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图.请根据图表信息回答下列问题:
初中毕业生视力抽样调查频数分布表
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查样本容量为 ;
(2)在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;
(3)若视力在4.9以上(含4.9)均属标准视力,根据上述信息估计全区初中毕业生中达到标准视力的学生约有多少人?