题目内容
【题目】如图,已知抛物线的顶点为,与轴相交于点,对称轴为直线,点是线段的中点.
(1)求抛物线的表达式;
(2)写出点的坐标并求直线的表达式;
(3)设动点,分别在抛物线和对称轴l上,当以,,,为顶点的四边形是平行四边形时,求,两点的坐标.
【答案】(1);(2),;(3)点、的坐标分别为或、或.
【解析】
(1)函数表达式为:,将点坐标代入上式,即可求解;
(2)、,则点,设直线的表达式为:,将点坐标代入上式,即可求解;
(3)分当是平行四边形的一条边、是平行四边形的对角线两种情况,分别求解即可.
解:(1)函数表达式为:,
将点坐标代入上式并解得:,
故抛物线的表达式为:;
(2)、,则点,
设直线的表达式为:,
将点坐标代入上式得:,解得:,
故直线的表达式为:;
(3)设点、点,
①当是平行四边形的一条边时,
点向左平移2个单位、向下平移4个单位得到,
同样点向左平移2个单位、向下平移4个单位得到,
即:,,
解得:,,
故点、的坐标分别为、;
②当是平行四边形的对角线时,
由中点定理得:,,
解得:,,
故点、的坐标分别为、;
故点、的坐标分别为,或、,或.
练习册系列答案
相关题目