题目内容
【题目】如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H
(1) 求证:HE=HG
(2) 如图2,当BE=AB时,过点A作AP⊥DE于点P连接BP,求的值
(3) 在(2)的条件下,若AD=2,∠ADE=30°,则BP的长为______________
【答案】(1)证明见解析;(2);(3)BP的长为
【解析】试题分析:(1)延长BC至M,且使CM=BE,通过三角形全等对应角相等,得出 G为EM的中点,由中位线性质得出∠HGE=∠AMB=∠HEG,由等角对等边得出HE=HG;(2)通过做辅助线得出三角形全等,对应边相等,即可求比值;(3)由∠ADE=∠CED=30°
∴CE=CD得出CE=CD,由BE+BC=CD+2=CD,得CD=,由DE=,∠ADE=30°,得AP=1,DP=,
试题解析:(1)延长BC至M,且使CM=BE,连接AM,
∴△ABM≌△DCE(SAS)
∴∠DEC=∠AMB
∵EB=CM,BG=CG
∴G为EM的中点
∴FG为△AEM的中位线
∴FG∥AM
∴∠HGE=∠AMB=∠HEG
∴HE=HG
(2) 过点B作BQ⊥BP交DE于Q
由八字型可得:∠BEQ=∠BAP
∴△BEQ≌△BAP(ASA)
∴PA=QE
∴
(3) ∵∠ADE=∠CED=30°
∴CE=CD
∴BE+BC=CD+2=CD,CD=
∴DE=2CD=
∵∠ADE=30°
∴AP=EQ=1,DP=
∴PQ=-1-=
∴BP=
练习册系列答案
相关题目