题目内容
【题目】如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2= .
【答案】36
【解析】解:如右图,连接EF,FG,GH,EH, ∵E、H分别是AB、DA的中点,
∴EH是△ABD的中位线,
∴EH= BD=3,
同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,
∴EF=GH= AC=3,FG= BD=3,
∴EH=EF=GH=FG=3,
∴四边形EFGH为菱形,
∴EG⊥HF,且垂足为O,
∴EG=2OE,FH=2OH,
在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,
等式两边同时乘以4得:4OE2+4OH2=9×4=36,
∴(2OE)2+(2OH)2=36,
即EG2+FH2=36.
所以答案是:36.
【考点精析】通过灵活运用勾股定理的概念和三角形中位线定理,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半即可以解答此题.
练习册系列答案
相关题目