题目内容
【题目】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为16,则k的值等于_____.
【答案】
【解析】
易证S菱形ABCO=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即可求得点C的坐标,代入反比例函数即可解题.
作DE∥AO,CF⊥AO,设CF=4x,
∵四边形OABC为菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴∴S△ADO=S△DEO,
同理S△BCD=S△CDE,
∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,
∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=32,
∵tan∠AOC=
∴OF=3x,
∴
∴OA=OC=5x,
∵S菱形ABCO=AOCF,解得:
∴
∴点C坐标为
∵反比例函数的图象经过点C,
∴代入点C得:
故答案为:
练习册系列答案
相关题目
【题目】已知关于的代数式,设代数式的值.
下表中列出了当分别取-1,0,1,2,3,4,5,…,,,…时对应的值.
… | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … | … | |||
… | 10 | 5 | 2 | 1 | 2 | 5 | … | … |
(1)表中的值为 ;
(2)当 时,有最小值,最小值是 ;
(3)比较与的大小.