题目内容
【题目】已知,直线y=2x+3与直线y=﹣2x﹣1.
(1)求两直线与y轴交点A,B的坐标;
(2)求两直线交点C的坐标;
(3)求△ABC的面积.
【答案】(1)A(0,3),B(0,-1);
(2)点C的坐标为(-1,1);
(3)S△ABC= 2.
【解析】
(1)利用待定系数法即可解决问题;
(2)构建方程组确定交点坐标即可;
(3)过点C作CD⊥AB交y轴于点D,根据S△ABC=ABCD计算即可.
(1)在y=2x+3中,当x=0时,y=3,即A(0,3);
在y=-2x-1中,当x=0时,y=-1,即B(0,-1);
(2)依题意,得,
解得;
∴点C的坐标为(-1,1);
(3)过点C作CD⊥AB交y轴于点D;
∴CD=1;
∵AB=3-(-1)=4;
∴S△ABC=ABCD=×4×1=2.
练习册系列答案
相关题目
【题目】某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:
车型 | 运费 | |
运往甲地/(元/辆) | 运往乙地/(元/辆) | |
大货车 | 720 | 800 |
小货车 | 500 | 650 |
(1)求这两种货车各用多少辆;
(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;
(2)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.