题目内容
【题目】若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间_____小时.
【答案】16
【解析】分析:根据第一个人与最后一个人的工作时间的平均值就是所有工人的工作时间的平均值,即可列方程求得工作时间.然后设共有y人参加装卸工作,根据最后参加的一个人装卸的时间是第一个人的,即可列方程求解.
详解:设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了x小时,两人共干活x+小时,平均每人干活 (x+)小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,…,
平均每人干活的时间也是 (x+)小时,
根据题设,得 (x+)=10,
解得x=16(小时);
设共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y-1)t小时,按题意,
得16-(y-1)t=16×,
即(y-1)t=12,
解此不定方程得,,,,,.
即参加的人数y=2或3或4或5或7或13.
故答案为:16.
【题目】重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:,,)