题目内容

【题目】如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为

【答案】2 或4﹣2
【解析】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,

∵四边形ABCD是矩形,

∴∠A=∠B=90°,AD=BC,

∵AB=4,AD=BC=2,

∴AD=AE=EB=BC=2,

∴△ADE、△ECB是等腰直角三角形,

∴∠AED=∠BEC=45°,

∴∠DEC=90°,

∵l∥EC,

∴ED⊥l,

∴EM=2=AE,

∴点A、点M关于直线EF对称,

∵∠MDF=∠MFD=45°,

∴DM=MF=DE﹣EM=2 ﹣2,

∴DF= DM=4﹣2

当直线l在直线EC下方时,

∵∠DEF1=∠BEF1=∠DF1E,

∴DF1=DE=2

综上所述DF的长为2 或4﹣2

所以答案是2 或4﹣2

【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对翻折变换(折叠问题)的理解,了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网