题目内容
【题目】已知四边形ABCD为菱形,其边长为6,,点P在菱形的边AD、CD及对角线AC上运动,当时,则DP的长为________.
【答案】2或或
【解析】
分以下三种情况求解:(1)点P在CD上,如图①,根据菱形的边长以及CP1=2DP1可得出结果;(2)点P在对角线AC上,如图②,在三角形CDP2中,可得出∠P2DC=90°,进而可得出DP2的长;(3)当点P在边AD上,如图③,过点D作于点F,过点作于点E,设,则,再用含x的代数式表示出CE,EP3,CP3的长,根据勾股定理列方程求解即可.
解:(1)当点P在CD上时,如解图①,
,,;
(2)当点P在对角线AC上时,如解图②,
,.
当时,,;
图① 图②
(3)当点P在边AD上时,如解图③,过点D作于点F,过点作于点E,设,则,
,,,,
,,
.
,在中,由勾股定理得,解得,(舍).
综上所述,DP的长为2或或.
故答案为:2或或.
练习册系列答案
相关题目
【题目】在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm, 整点P从原点0出发,速度为1cm/s, 且整点P做向上或向右运动(如图1所示.运动时间(s)与整点(个)的关系如下表:
整点P从原点出发的时间(s) | 可以得到整点P的坐标 | 可以得到整点P的个数 |
1 | (0,1)(1,0) | 2 |
2 | (0,2)(1,1)(2,0) | 3 |
3 | (0,3)(1,2)(2,1)(3,0) | 4 |
. | · | . |
根据上表中的规律,回答下列问题:
(1)当整点P从点0出发4s时,可以得到的整点的个数为______个.
(2)当整点P从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点.
(3)当整点P从点0出发______s时,可以得到整点(16,4)的位置.