题目内容
【题目】如图,在正方形ABCD中,E、F分别为AB、BC上的点,且AE=BF,连结DE、AF,猜想DE、AF的关系并证明.
【答案】DE=AF且DE⊥AF
【解析】
试题先根据正方形的性质得AB=AD=BC,∠DAB=∠B=90°,则可利用“SAS”判定△DAE≌△ABF,得到DE=AF,∠1=∠2,由于∠1+∠AED=90°,所以∠2+∠AED=90°,根据三角形内角和得到∠AOE=90°,于是得到DE⊥AF.
试题解析:猜想:DE=AF且DE⊥AF.
证明:∵四边形ABCD是正方形,
∴AB=AD=BC,∠DAB=∠B=90°,
在△DAE和△ABF中,
,
∴△DAE≌△ABF(SAS),
∴DE=AF,∠1=∠2.
又∵∠1+∠AED=90°,
∴∠2+∠AED=90°,
∵∠AOE+∠2+∠AED=180°,
∴∠AOE=90°,
∴DE⊥AF,
即DE=AF且DE⊥AF.
练习册系列答案
相关题目
【题目】某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售量 | 销售收入 | |
A型号 | B型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(1)求A、B两种型号的电风扇的销售价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.