ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚµÚÒ»ÏóÏÞÄÚ£¬Ë«ÇúÏßy=
ÉÏÓÐÒ»¶¯µãB£¬¹ýµãB×÷Ö±ÏßBC¡ÎyÖᣬ½»Ë«ÇúÏßy=
ÓÚµãC£¬×÷Ö±ÏßBA¡ÎxÖᣬ½»Ë«ÇúÏßy=
ÓÚµãA£¬¹ýµãC×÷Ö±ÏßCD¡ÎxÖᣬ½»Ë«ÇúÏßy=
ÓÚµãD£¬Á¬½ÓAC¡¢BD£®
£¨1£©µ±BµãµÄºá×ø±êΪ2ʱ£¬¢ÙÇóA¡¢B¡¢C¡¢DËĵãµÄ×ø±ê£»¢ÚÇóÖ±ÏßBDµÄ½âÎöʽ£»
£¨2£©BµãÔÚÔ˶¯¹ý³ÌÖУ¬ÌÝÐÎACDBµÄÃæ»ý»á²»»á±ä»¯£¿Èç»á±ä»¯£¬Çë˵Ã÷ÀíÓÉ£»Èç¹û²»»á±ä»¯£¬Çó³öËüµÄ¹Ì¶¨Öµ£®
6 |
x |
1 |
x |
1 |
x |
6 |
x |
£¨1£©µ±BµãµÄºá×ø±êΪ2ʱ£¬¢ÙÇóA¡¢B¡¢C¡¢DËĵãµÄ×ø±ê£»¢ÚÇóÖ±ÏßBDµÄ½âÎöʽ£»
£¨2£©BµãÔÚÔ˶¯¹ý³ÌÖУ¬ÌÝÐÎACDBµÄÃæ»ý»á²»»á±ä»¯£¿Èç»á±ä»¯£¬Çë˵Ã÷ÀíÓÉ£»Èç¹û²»»á±ä»¯£¬Çó³öËüµÄ¹Ì¶¨Öµ£®
£¨1£©¢Ù°Ñx=2´úÈëy=
£¬µÃy=3£¬¹ÊµãBµÄ×ø±êΪ£¨2£¬3£©£¬
°Ñx=2´úÈëy=
£¬µÃy=
£¬¹ÊC£¨2£¬
£©£¬
°Ñy=3´úÈëy=
£¬µÃx=
£¬¹ÊµãAµÄ×ø±êΪ£¨
£¬3£©£¬
°Ñy=
´úÈëy=
£¬µÃx=12£¬¹ÊµãDµÄ×ø±êΪ£¨12£¬
£©£»
¢ÚÉèÖ±ÏßBDËù±íʾµÄº¯Êý¹ØϵʽΪ£ºy=kx+b£¬
ÓÉÌâÒâµÃ£¬
£¬
½âµÃ
£¬
¹ÊÖ±ÏßABËù±íʾµÄº¯Êý¹ØϵʽΪ£ºy=-
x+
£®
£¨2£©ÉèBµãµÄ×ø±êΪ£¨m£¬
£©£¬
ÔòA£¨
£¬
£©¡¢C£¨m£¬
£©¡¢D£¨6m£¬
£©£¬
¡àAB=m-
=
m£¬CD=6m-m=5m£¬BC=
-
=
£¬
¡àSÌÝÐÎACDB=
£¨
m+5m£©¡Á
=
¡Á
¡Á5=
£¬
¹ÊBµãÔÚÔ˶¯¹ý³ÌÖУ¬ÌÝÐÎACDBµÄÃæ»ý²»±ä£¬ºãµÈÓÚ
£®
6 |
x |
°Ñx=2´úÈëy=
1 |
x |
1 |
2 |
1 |
2 |
°Ñy=3´úÈëy=
1 |
x |
1 |
3 |
1 |
3 |
°Ñy=
1 |
2 |
6 |
x |
1 |
2 |
¢ÚÉèÖ±ÏßBDËù±íʾµÄº¯Êý¹ØϵʽΪ£ºy=kx+b£¬
ÓÉÌâÒâµÃ£¬
|
½âµÃ
|
¹ÊÖ±ÏßABËù±íʾµÄº¯Êý¹ØϵʽΪ£ºy=-
1 |
4 |
7 |
2 |
£¨2£©ÉèBµãµÄ×ø±êΪ£¨m£¬
6 |
m |
ÔòA£¨
m |
6 |
6 |
m |
1 |
m |
1 |
m |
¡àAB=m-
m |
6 |
5 |
6 |
6 |
m |
1 |
m |
5 |
m |
¡àSÌÝÐÎACDB=
1 |
2 |
5 |
6 |
5 |
m |
1 |
2 |
35 |
6 |
175 |
12 |
¹ÊBµãÔÚÔ˶¯¹ý³ÌÖУ¬ÌÝÐÎACDBµÄÃæ»ý²»±ä£¬ºãµÈÓÚ
175 |
12 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿