题目内容

【题目】如图,点在抛物线上,且在该抛物线对称轴的同侧(点在点的左侧),过点分别作轴的垂线,分别交轴于点,交直线于点.设为四边形的面积.则下列关系正确的是( )

A. S=y2+y1 B. S=y2+2y1 C. S=y2-y1 D. S=y2-2y1

【答案】C

【解析】

首先根据题意可求得:y1,y2的值,AC的坐标,即可用x1x2表示出AB,CD,BD的值,易得四边形ABCD是直角梯形,即可得S=(AB+CD)BD,然后代入其取值,整理变形,即可求得Sy1、y2的数量关系式.

解:根据题意得:y1=ax12+bx1+c,y2=ax22+bx2+c,

A的坐标为:(x1,2ax1+b),点C的坐标为:(x2,2ax2+b),

∴AB=2ax1+b,CD=2ax2+b,BD=x2-x1

∵EB⊥BD,CD⊥BD,

∴AB∥CD,

∴四边形ABCD是直角梯形,

∴S=(AB+CD)BD=(2ax1+b+2ax2+b)(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(ax22+bx2)-(ax12+bx1)=(ax22+bx2+c)-(ax12+bx1+c)=y2-y1

S=y2-y1

故选:C.

练习册系列答案
相关题目

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

【答案】(1) 见解析; (2)3 ;(3)见解析.

【解析】试题分析:(1)根据圆周角定理得到BAC=90°,根据三角形的内角和得到ACB=60°根据切线的性质得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到结论;

(2)根据SAOC=,得到SACF=,通过ACF∽△DAE,求得SDAE=,过AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;

(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,过OOGEFG,根据全等三角形的性质得到OG=OA,即可得到结论.

试题解析:(1)证明:BCO的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切线,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,过AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切线.

型】解答
束】
25

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为   

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网