题目内容
【题目】如图,正方形中,,点在边上,且.将沿对折至,延长交边于点.连结、.下列结论:①;②;③是正三角形;④的面积为90.其中正确的是______(填所有正确答案的序号).
【答案】①②④
【解析】
①根据折叠的性质可以得到∠B=∠AFG=90°,AB=AF,AG=AG,根据HL定理即可证明两三角形全等;
②不妨设BG=FG=x,(x>0),则CG=30-x,EG=10+x,在Rt△CEG中,利用勾股定理即可列方程求得;
③利用②得出的结果,结合折叠的性质求得答案即可;
④根据三角形的面积公式可得:S△FGC=S△EGC,即可求解.
解:如图:
在正方形ABCD中,AD=AB,∠D=∠B=∠C=90°,
又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G
∴∠AFG=∠AFE=∠D=90°,AF=AD,
即有∠B=∠AFG=90°,AB=AF,AG=AG,
在直角△ABG和直角△AFG中,
AB=AF,AG=AG,
∴△ABG≌△AFG;正确.
∵AB=30,点E在边CD上,且CD=3DE,
∴DE=FE=10,CE=20,
不妨设BG=FG=x,(x>0),
则CG=30-x,EG=10+x,
在Rt△CEG中,(10+x)2=202+(30-x)2
解得x=15,于是BG=GC=15;正确.
∵BG=GF=CG,
∴△CFG是等腰三角形,
∵BG=AB,
∴∠AGB≠60°,
则∠FGC≠60°,
∴△CFG不是正三角形.错误.
∵,
∴,
∴S△FGC=S△EGC=××20×15=90.正确.
正确的结论有①②④.
故答案为:①②④.
练习册系列答案
相关题目