题目内容
如图,一条直线与反比例函数y=
的图象交于A(1,4)、B(4,n)两点,与x轴交于D点,AC⊥x轴,垂足为C.
(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标;
(2)如图乙,若点E在线段AD上运动,连接CE,作∠CEF=45°,EF交AC于F点.
①试说明△CDE∽△EAF;
②当△ECF为等腰三角形时,直接写出F点坐标.
k |
x |
(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标;
(2)如图乙,若点E在线段AD上运动,连接CE,作∠CEF=45°,EF交AC于F点.
①试说明△CDE∽△EAF;
②当△ECF为等腰三角形时,直接写出F点坐标.
(1)①∵点A(1,4)在反比例函数图象上
∴k=4
即反比例函数关系式为y=
;
②∵点B(4,n)在反比例函数图象上
∴n=1
设一次函数的解析式为y=mx+b
∵点A(1,4)和B(4,1)在一次函数y=mx+b的图象上
∴
解得
∴一次函数关系式为y=-x+5
令y=0,得x=5
∴D点坐标为D(5,0);
(2)①证明:∵A(1,4),D(5,0),AC⊥x轴
∴C(1,0)
∴AC=CD=4,
即∠ADC=∠CAD=45°,
∵∠AEC=∠ECD+∠ADC=∠ECD+45°,
∠AEC=∠AEF+∠FEC=∠AEF+45°,
∴∠ECD=∠AEF,
△CDE和△EAF的两角对应相等,
∴△CDE∽△EAF.
②当CE=FE时,由△CDE≌△EAF可得AE=CD=4,DE=AF=4﹙
-1),
∵A(1,4),
∴F点的纵坐标=4-AF=4-4(
-1)=8-4
∴F﹙1,8-4
﹚
当CE=CF时,由∠FEC=45°知∠ACE=90°,此时E与D重合,
∴F与A重合,
∴F(1,4)
当CF=EF时,由∠FEC=45°知∠CFE=90°,显然F为AC中点,
∴F(1,2)
当△ECF为等腰三角形时,点F的坐标为F1(1,2);F2(1,4);F3(1,8-4
)
∴k=4
即反比例函数关系式为y=
4 |
x |
②∵点B(4,n)在反比例函数图象上
∴n=1
设一次函数的解析式为y=mx+b
∵点A(1,4)和B(4,1)在一次函数y=mx+b的图象上
∴
|
解得
|
∴一次函数关系式为y=-x+5
令y=0,得x=5
∴D点坐标为D(5,0);
(2)①证明:∵A(1,4),D(5,0),AC⊥x轴
∴C(1,0)
∴AC=CD=4,
即∠ADC=∠CAD=45°,
∵∠AEC=∠ECD+∠ADC=∠ECD+45°,
∠AEC=∠AEF+∠FEC=∠AEF+45°,
∴∠ECD=∠AEF,
△CDE和△EAF的两角对应相等,
∴△CDE∽△EAF.
②当CE=FE时,由△CDE≌△EAF可得AE=CD=4,DE=AF=4﹙
2 |
∵A(1,4),
∴F点的纵坐标=4-AF=4-4(
2 |
2 |
∴F﹙1,8-4
2 |
当CE=CF时,由∠FEC=45°知∠ACE=90°,此时E与D重合,
∴F与A重合,
∴F(1,4)
当CF=EF时,由∠FEC=45°知∠CFE=90°,显然F为AC中点,
∴F(1,2)
当△ECF为等腰三角形时,点F的坐标为F1(1,2);F2(1,4);F3(1,8-4
2 |
练习册系列答案
相关题目