题目内容
【题目】如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
【答案】(1)-4(2)1≤x≤5(3)0≤m<1或1<m<2
【解析】
1)利用待定系数法求解即可.
(2)求出时,的值即可判断.
(3)由题意点的坐标为,求出几个特殊位置的值即可判断.
解:(1)当时,,
当时,.
(2)当时,将代入函数表达式,得,
解得或(舍弃),
此时抛物线的对称轴,
根据抛物线的对称性可知,当时,或5,
的取值范围为.
(3)点与点不重合,
,
抛物线的顶点的坐标是,
抛物线的顶点在直线上,
当时,,
点的坐标为,
抛物线从图1的位置向左平移到图2的位置,逐渐减小,点沿轴向上移动,
当点与重合时,,
解得或,
当点与点重合时,如图2,顶点也与,重合,点到达最高点,
点,
,解得,
当抛物线从图2的位置继续向左平移时,如图3点不在线段上,
点在线段上时,的取值范围是:或.
练习册系列答案
相关题目