题目内容
【题目】用反证法证明:若二次方程8x2﹣(k﹣1)x+k﹣7=0有两个不等实数根,则两根不可能互为倒数.
【答案】证明:假设若二次方程8x2﹣(k﹣1)x+k﹣7=0有两个不等实数根,且两根互为倒数,
设两根为x1 , x2 , 由题意可得:x1x2==1,
解得:k=15,
故8x2﹣(15﹣1)x+18﹣7=0
即4x2﹣7x+4=0
则b2﹣4ac=49﹣64=﹣15<0,
此方程无实数根,故假设不成立,原命题正确,
即若二次方程8x2﹣(k﹣1)x+k﹣7=0有两个不等实数根,则两根不可能互为倒数.
【解析】首先假设若二次方程8x2﹣(k﹣1)x+k﹣7=0有两个不等实数根,且两根互为倒数,进而利用根与系数的关系得出k的值,再利用根的判别式得出矛盾,问题得证.
【考点精析】掌握求根公式和反证法是解答本题的根本,需要知道根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.
练习册系列答案
相关题目