题目内容
【题目】某商场购进一批单价为4元/件的日用品。若按每件5元的价格出售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件;假定每月的销售件数y(万件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
【答案】(1)y与x的函数关系式为y=-x+8;
(2)当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.
【解析】试题分析:(1)设y=kx+b,再由题目已知条件不难得出解析式;(2)设利润为W,将W用含x的式子表示出来,W为关于x的二次函数,要求最值,将解析式化为顶点式即可求出.
试题解析:
解:(1)设y=kx+b,
根据题意得: ,
解得:k=-1,b=8,
所以,y与x的函数关系式为y=-x+8;
(2)设利润为W,则W=(x-4)(-x+8)=-(x-6)2+4,
因为a=-1<0,所以当x=6时,W最大为4万元.
当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.
练习册系列答案
相关题目