题目内容

如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是


  1. A.
    DF=BE
  2. B.
    AF=CE
  3. C.
    CF=AE
  4. D.
    CF∥AE
C
分析:根据平行四边形的性质和全等三角形的判定方法逐项分析即可.
解答:解:A、当DF=BE时,有平行四边形的性质可得:AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;
B、当AF=CE时,有平行四边形的性质可得:BE=DF,AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;
C、当CF=AE时,有平行四边形的性质可得:AB=CD,∠B=∠D,利用SSA不能判定△CDF≌△ABE;
D、当CF∥AE时,有平行四边形的性质可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE.
故选C.
点评:本题考查了平行四边形的性质和重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网