题目内容
【题目】点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将一直角的顶点放在点O处,∠MON=90°.
(1)如图1,当∠MON的一边OM与射线OB重合时,则∠NOC=_________;
(2)将∠MON绕点O逆时针运动至图2时,若∠MOC=15°,则∠BOM=______;∠AON=_______.
(3)在上述∠MON从图1运动到图3的位置过程中,当∠MON的边OM所在直线恰好平分∠AOC时,求此时∠NOC是多少度?
【答案】(1)150°;(2)45°,135°;(3)30°.
【解析】
(1)由∠AOC:∠BOC=2:1,根据平角的定义可求出∠AOC、∠BOC的度数,根据角的和差关系即可求出∠NOC的度数;
(2)根据∠BOC和∠MOC的度数可求出∠BOM的度数,根据角的和差关系即可求出∠BOM的度数,根据∠MON=90°可求出∠NOB的度数,根据平角的定义即可求出∠AON的度数;
(3)利用角平分线的定义可求出∠MOC的度数,进而可求出∠NOC的度数.
(1)∵∠AOC:∠BOC=2:1,∠AOC+∠BOC=180°,
∴∠AOC=180°×=120°,∠BOC=180°×=60°,
∵∠MON=90°,
∴∠NOC=∠BOC+∠MON=90°+60°=150°.
故答案为:150°
(2)由(1)可知:∠BOC=60°,
∵∠MOC=15°,
∴∠BOM=∠BOC-∠MOC=60°-15°=45°,
∵∠MON=90°,
∴∠BON=90°-∠BOM=45°,
∴∠AON=180°-∠AON=135°,
故答案为:45°,135°
(3)由(1)可知:∠AOC=120°,∠BOC=60°,
∵OM平分∠AOC,
∴∠COM=∠AOC=60°,
∵∠MON=90°,
∴∠NOC=∠MON-∠COM=90°-60°=30°.
【题目】某公司计划投入50万元,开发并生产甲乙两种产品,根据市场调查预计甲产品的年获利y1(万元)与投入资金x(万元)成正比例,乙产品的年获利y2(万元)与投入资金x(万元)的平方成正比例,设该公司投入乙产品x(万元),两种产品的年总获利为y万元(x≥0),得到了表中的数据.
x(万元) | 20 | 30 |
y(万元) | 10 | 13 |
(1)求y与x的函数关系式;
(2)该公司至少可获得多少利润?请你利用所学的数学知识对该公司投入资金的分配提出合理化建
议,使他能获得最大利润,并求出最大利润是多少?
(3)若从年总利润扣除投入乙产品资金的a倍(a≤1)后,剩余利润随x增大而减小,求a的取值
范围.