题目内容
【题目】如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.
(1)请求出旋转角的度数;
(2)请判断与的位置关系,并说明理由;
(3)若,,试求出四边形的对角线的长.
【答案】(1)旋转角的度数为 ; (2),理由见解析;(3).
【解析】
(1)根据旋转的性质可得:AC=BC,从而得到,再由三角形内角和得到∠ACB=,即为旋转的角度;
(2)由旋转的性质可得,从而得到,由对顶角相等得,从而得到,即可得出结论;
(3) 连接,先证明△CDE是等腰直角三角形,再在Rt△ADE中,求出AE即可解决问题.
(1)∵将绕点顺时针旋转得到
∴
∴,
又∵,
∴,
∴
故旋转角的度数为
(2).理由如下:
在中,
∴
∵
∴
即
又∵
∴
∴
∴.
(3)如图,连接,
由旋转图形的性质可知
,旋转角
∴
∵,
∴
在中,
∴,
∵
∴
在中,
∴
∴
练习册系列答案
相关题目