题目内容
【题目】已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.
(1)求证:DE为⊙O的切线;
(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.
【答案】(1)详见解析;(2)∠EAF的度数为30°.
【解析】
(1)连接OD,如图,先证明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根据切线的判定定理得到结论;
(2)利用圆周角定理得到∠AFB=90°,再证明Rt△GEF∽△Rt△GAE,利用相似比得到,于是可求出GF=1,然后在Rt△AEG中利用正弦定义求出∠EAG的度数即可.
(1)证明:连接OD,如图,
∵OB=OD,
∴∠OBD=∠ODB,
∵AB=AC,
∴∠ABC=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE为⊙O的切线;
(2)∵AB为直径,
∴∠AFB=90°,
∵∠EGF=∠AGF,
∴Rt△GEF∽△Rt△GAE,
∴,即,
整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),
在Rt△AEG中,sin∠EAG=,
∴∠EAG=30°,
即∠EAF的度数为30°.
练习册系列答案
相关题目