题目内容
【题目】如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).
(1)求这个抛物线的解析式;
(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】
【1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得…………………………………………2分
即所求抛物线的解析式为:……………………………3分
【2】 如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得
∴点E坐标为(-2,3)………………………………………………………………4分
又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、
D(0,3),所以顶点C(-1,4)
∴抛物线的对称轴直线PQ为:直线x=-1, [中国教#&~@育出%版网]
∴点D与点E关于PQ对称,GD=GE……………………………………………②
分别将点A(1,0)、点E(-2,3)
代入y=kx+b,得:
解得:
过A、E两点的一次函数解析式为:
y=-x+1
∴当x=0时,y=1
∴点F坐标为(0,1)……………………5分
∴=2………………………………………③
又∵点F与点I关于x轴对称,
∴点I坐标为(0,-1)
∴……………………………………④
又∵要使四边形DFHG的周长最小,由于DF是一个定值,
∴只要使DG+GH+HI最小即可 ……………………………………6分
由图形的对称性和①、②、③,可知,
DG+GH+HF=EG+GH+HI
只有当EI为一条直线时,EG+GH+HI最小
设过E(-2,3)、I(0,-1)两点的函数解析式为:,
分别将点E(-2,3)、点I(0,-1)代入,得:
解得:
过I、E两点的一次函数解析式为:y=-2x-1
∴当x=-1时,y=1;当y=0时,x=-;
∴点G坐标为(-1,1),点H坐标为(-,0)
∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI
由③和④,可知:
DF+EI=
∴四边形DFHG的周长最小为. …………………………………………7分
【3】 如图⑤,
由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:
解得:,
过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);
由图可知,△AOM为直角三角形,且, ………………8分
要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论; ……………………………………………………………………………9分
①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分
②当∠PCM=90°时,CM=,若则,可求出
P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分
综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分
【解析】
(1)直接利用三点式求出二次函数的解析式;
(2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,
由图形的对称性和,可知,HF=HI,GD=GE,
DG+GH+HF=EG+GH+HI
只有当EI为一条直线时,EG+GH+HI最小,即
,DF+EI=
即边形DFHG的周长最小为.
(3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)
【题目】为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量 | 平均数(次) | 中位数(次) | 众数(次) | 方差 | … |
该班级男生 | … |
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.