题目内容
【题目】如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,作CM⊥AD,垂足为M,下列结论不正确的是( )
A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM
【答案】D
【解析】
由等边三角形的性质和已知条件证出△AEC≌△BDA,即可得出A正确;
由全等三角形的性质得出∠BAD=∠ACE,求出∠CFM=∠AFE=60°,得出∠FCM=30°,即可得出B正确;由等边三角形的性质和三角形的外角性质得出C正确;D不正确.
A正确;理由如下:
∵△ABC是等边三角形,
∴∠BAC=∠B=60°,AB=AC
又∵AE=BD
在△AEC与△BDA中,
,
∴△AEC≌△BDA(SAS),
∴AD=CE;
B正确;理由如下:
∵△AEC≌△BDA,
∴∠BAD=∠ACE,
∴∠AFE=∠ACE+∠CAD=∠BAD+∠CAD=∠BAC=60°,
∴∠CFM=∠AFE=60°,
∵CM⊥AD,
∴在Rt△CFM中,∠FCM=30°,
∴MF=CF;
C正确;理由如下:
∵∠BEC=∠BAD+∠AFE,∠AFE=60°,
∴∠BEC=∠BAD+∠AFE=∠BAD+60°,
∵∠CDA=∠BAD+∠CBA=∠BAD+60°,
∴∠BEC=∠CDA;
D不正确;理由如下:
要使AM=CM,则必须使∠DAC=45°,由已知条件知∠DAC的度数为大于0°小于60°均可,
∴AM=CM不成立;
故选:D.
【题目】小明和小亮玩扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:
第一步:分发左、中、右三堆牌,每堆牌都为张,且;
第二步:从左边一堆拿出两张,放入中间一堆;
第三步:从右边一堆拿出五张,放入中间一堆
第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.
(1)填写下表中的空格:
步骤 | 左边一堆牌的张数 | 中间一堆牌的张数 | 右边一堆牌的张数 |
第一步后 | |||
第二步后 | |||
第三步后 | |||
第四步后 |
(2)如若第四步完成后,中间一堆牌的张数的2倍恰好是右边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?