题目内容
【题目】如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=CD,且AE=BE.
(1)求线段AO的长;
(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;
(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.
【答案】(1)AO=BC=5;(2)①S=﹣2t2+t(0<t<);②S=2t2﹣t(<t≤5);(3)存在;t=1或s.
【解析】
(1)只要证明△AOE≌△BCE即可解决问题;
(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2﹣4t,②当点Q在射线DC上时,DQ=4t﹣2时;
(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当OP=CQ时,△BOP≌△FCQ.
解:(1)如图1中,
∵AD是高,
∴∠ADC=90°,
∵BE是高,
∴∠AEB=∠BEC=90°,
∴∠EAO+∠ACD=90°,∠EBC+∠ECB=90°,
∴∠EAO=∠EBC,
在△AOE和△BCE中,
,
∴△AOE≌△BCE,
∴AO=BC=5.
(2)∵BD=CD,BC=5,
∴BD=2,CD=3,
由题意OP=t,BQ=4t,
①当点Q在线段BD上时,QD=2﹣4t,
∴S=t(2﹣4t)=﹣2t2+t(0<t<).
②当点Q在射线DC上时,DQ=4t﹣2,
∴S=t(4t﹣2)=2t2﹣t(<t≤5).
(3)存在.
①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.
∴CQ=OP,
∴5﹣4t═t,
解得t=1,
②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,
∴△BOP≌△FCQ.
∴CQ=OP,
∴4t﹣5=t,
解得t=.
综上所述,t=1或s时,△BOP与△FCQ全等.