题目内容

如图,在平行四边形ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于点F.设DE=x(cm),BF=y(cm).

(1)求y(cm)与x(cm)之间的函数关系式,并写出自变量x的取值范围;

(2)画出此函数的图象.

 

【答案】

(1)0< x<4;

(2) 画出函数图象如图所示:

【解析】

试题分析:由平行四边形的性质可得AD∥CF,则AD:CF=DE:EC,而EC=CD-DE=4-x,而CF=BF-BC=y-1,根据比例关系即可求出y,x的函数关系式.

(1)四边形ABCD是平行四边形,

∴AD∥CF,

,即

,自变量x的取值范围是0< x<4;

 (2) 画出函数图象如图所示:

考点:本题考查了平行四边形的性质,反比例函数的应用

点评:解答本题的关键是熟练掌握平行四边形的对边互相平行,同时注意实际问题中的函数图象一般都位于第一象限.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网