题目内容
【题目】为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:
请根据以图表信息,解答下列问题:
(1)表中m= ,n= ;
(2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.
【答案】(1)m=120;n=0.2;(2)答案见解析;(3)第一组;(4)0.55
【解析】试题分析:(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;(1)根据(1)中的m的值,可以将补全频数分布直方图;(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.
试题解析:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,
则m=300×0.4=120,n=60÷300=0.2,
(2)补全的频数分布直方图如图所示,
(3)∵35+45=75,75+60=135,135+120=255, ∴全体参赛选手成绩的中位数落在80≤x<90这一组;
(4)由题意可得:, 即这名选手恰好是获奖者的概率是0.55.
练习册系列答案
相关题目