题目内容
【题目】如图1,在弧MN和弦MN所组成的图形中,P是弦MN上一动点,过点P作弦MN的垂线,交弧MN于点Q,连接MQ.已知MN=6cm,设M、P两点间的距离为xcm,P、Q两点间的距离为y1cm,M、Q两点间的距离为y2cm.小轩根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小轩的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm.
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 3.00 | 2.83 | 2.24 | 0 |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | m | 5.48 | 6 |
上表中m的值为 .(保留两位小数)
(2)在同一平面直角坐标系xOy(图2)中,函数y1的图象如图,请你描出补全后的表中y2各组数值所对应的点(x,y2),并画出函数y2的图象;
(3)结合函数图象,解决问题:当△MPQ有一个角是30°时,MP的长度约为 cm.(保留两位小数)
【答案】(1)4.90;(2)见解析;(3)1.50或4.50.
【解析】
(1)根据题意直接利用测量法进行分析计算解决问题即可;
(2)由题意直接利用描点画出函数图象即可;
(3)由题意利用图象法求出函数y1与直线y=x,直线y=x的交点的横坐标即可解决问题.
解:(1)利用测量法可知:当x=4时,y2=4.90,
∴m=4.90,
故答案为:4.90.
(2)函数图象如图所示:
(3)函数y1与直线y=x的交点的横坐标为1.50,
函数y1与直线y=x的交点的横坐标为4.50,
故当△MPQ有一个角是60°时,MP的长度约为1.50或4.50.
故答案为:1.50或4.50.
【题目】某区响应国家提出的垃圾分类的号召,将生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为了解居民生活垃圾分类的情况,随机对该区四类垃圾箱中总计1000吨生活垃圾进行分拣后,统计数据如表:
垃圾箱种类 垃圾量 垃圾种类(吨) | “厨余垃圾”箱 | “可回收物”箱 | “有害垃圾”箱 | “其他垃圾”箱 |
厨余垃圾 | 400 | 100 | 40 | 60 |
可回收物 | 30 | 140 | 10 | 20 |
有害垃圾 | 5 | 20 | 60 | 15 |
其他垃圾 | 25 | 15 | 20 | 40 |
下列三种说法:
(1)厨余垃圾投放错误的有400t;
(2)估计可回收物投放正确的概率约为;
(3)数据显示四类垃圾箱中都存在各类垃圾混放的现象,因此应该继续对居民进行生活垃圾分类的科普.其中正确的个数是( )
A.0B.1C.2D.3
【题目】体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围 | |||||||
人数 |
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:
平均数 | 中位数 | 满分率 |
46.8 | 47.5 |
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数;
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数 | 中位数 | 满分率 |
45.3 | 49 |
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估.