题目内容

在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,-,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数y=图象上,则点P落在正比例函数y=x图象上方的概率是   
【答案】分析:首先由点P在反比例函数y=图象上,即可求得点P的坐标,然后找到点P落在正比例函数y=x图象上方的有几个,根据概率公式求解即可.
解答:解:∵点P在反比例函数y=图象上,
∴点P的坐标可能为:(,2),(2,),(4,),(-,-3),
∵点P落在正比例函数y=x图象上方的有:(,2),
∴点P落在正比例函数y=x图象上方的概率是
故答案为:
点评:此题考查了反比例函数与一次函数与点的关系,以及概率公式的应用.注意概率=所求情况数与总情况数之比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网