题目内容
【题目】下面是小东设计的“作矩形”的尺规作图过程,已知:
求作:矩形
作法:如图,
①作线段的垂直平分线角交于点;
②连接并延长,在延长线上截取
③连接
所以四边形即为所求作的矩形
根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形:(保留作图痕迹)
(2)完成下边的证明:
证明: ,,
四边形是平行四边形( )(填推理的依据)
四边形是矩形( )(填推理的依据)
【答案】(1)见解析;(2)OC,对角线互相平分的四边形是平行四边形;一角为直角的平行四边形是矩形.
【解析】
(1)根据要求作出图形即可.
(2)根据对角线互相平分得到四边形ABCD是平行四边形,因为∠ABC=90°,且四边形ABCD是平行四边形,则可判定四边形ABCD矩形.
解:(1)如图,矩形ABCD即为所求.
(2)∵OA=OC,OD=OB,
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),
∵∠ABC=90°,四边形ABCD是矩形(有一个角是直角的平行四边形是矩形)
故答案为:OC,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.
【题目】填写推理理由:
如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2( ),
∵∠1=∠2,
∴∠DCB=∠1( ).
∴GD∥CB( ),
∴∠3=∠ACB( ).
【题目】疫情期间福州一中初中部举行了“宅家运动会”.该学校七、八年级各有300名学生参加了这次“宅家运动会”,现从七、八年级各随机抽取20名学生宅家运动会的成绩进行抽样调查.
收集数据如下:
七年级: | 74 | 97 | 96 | 72 | 98 | 99 | 72 | 73 | 76 | 74 |
74 | 69 | 76 | 89 | 78 | 74 | 99 | 97 | 98 | 99 | |
八年级: | 76 | 88 | 96 | 89 | 78 | 94 | 89 | 94 | 95 | 50 |
89 | 68 | 65 | 89 | 77 | 86 | 89 | 88 | 92 | 91 |
整理数据如下:
七年级 | 0 | 1 | 10 | 1 | a |
八年级 | 1 | 2 | 3 | 8 | 6 |
分析数据如下:
年级 | 平均数 | 中位数 | 众数 | 方差 |
七年级 | 84.2 | 77 | 74 | 138.56 |
八年级 | 84 | b | 89 | 129.7 |
根据以上信息,回答下列问题:
(1)___________,___________;
(2)你认为哪个年级“宅家运动会”的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性)
(3)学校对“宅家运动会”成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有___________人.
【题目】世界上大部分国家都使用摄氏温度(),但美国、英国等国家的天气预报仍然使用华氏温度().两种计量之间有如下对应:
摄氏温度() | ||||||
华氏温度() |
(1)上表反映了哪两变量之间的关系?哪个是自变量?哪个是因变量?
(2)由上表可得:摄氏温度()每提高度,华氏温度()提高_____度.
(3)摄氏温度度时华氏温度为______度.
(4)华氏温度度时摄氏温度为_______度.
(5)华氏温度的值与对应的摄氏温度的值有相等的可能吗?如果有,求出这个值.如果没有,请说明理由.