题目内容
【题目】问题情境:如图1,AB∥CD,∠A=30°,∠C=40°,求∠AEC的度数.小明的思路是:
(1)初步尝试:按小明的思路,求得∠AEC的度数;
(2)问题迁移:如图2,AB∥CD,点E、F为AB、CD内部两点,问∠A、∠E、∠F和∠D之间有何数量关系?请说明理由;
(3)应用拓展:如图3,AB∥CD,点E、F为AB、CD内部两点,如果∠E+∠EFG=160°,请直接写出∠B与∠D之问的数量关系.
【答案】(1)70° (2)答案见解析 (3)∠B+∠D=160°
【解析】
(1)添加辅助线,转化基本图形,过E作EM∥AB,利用平行线的性质可证得∠A =∠AEM,∠C=∠CEM,再证明∠AEC=∠A+∠C,继而可解答问题;
(2)添加辅助线,转化两直线平行的基本图形,过点E作EM∥AB, 过点F作FN∥AB ,利用平行线的性质可证AB∥ME∥FN∥CD, 再根据两直线平行,内错角相等,可证得∠A =∠AEM,∠MEF=∠EFN,∠D=∠DFN,然后将三式相加,可证得结论;
(3)过点E作EH∥AB,过点F作FM∥AB ,结合已知可证得AB∥CD∥FM∥EH,利用两直线平行,同位角相等,同旁内角互补,可证∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,再将三个等式相加,整理可得到∠B+∠D=180°+∠BEF-∠EFD,然后由∠BEF+∠EFG=160° ,可推出∠BEF-∠EFD=-20°,整体代入求出∠B+∠D的值.
(1)如图,过E作EM∥AB,
∵AB∥CD,∴AB∥ME∥CD,
∴∠A =∠AEM,∠C=∠CEM,
∴∠AEC=∠A+∠C=70°;
(2)∠A+∠EFD =∠AEF+∠D
理由如下:过点E作EM∥AB, 过点F作FN∥AB
∵AB∥CD,∴AB∥ME∥FN∥CD,
∴∠A =∠AEM,∠MEF=∠EFN,∠D=∠DFN,
∴∠A+∠EFD =∠AEF+∠D;
(3)过点E作EH∥AB,过点F作FM∥AB ,
∵AB∥CD,
∴AB∥CD∥FM∥EH,
∴∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,
∴∠B+∠EFM+∠MFD+∠D=180°+∠BEH+∠HEF,
∴∠B+∠D+∠EFD=180°+∠BEF,
∴∠B+∠D=180°+∠BEF-∠EFD。
∵ ∠BEF+∠EFG=160° ,
∴∠BEF+180°-∠EFD=160°,
∴∠BEF-∠EFD=-20°,
∴∠B+∠D=180°-20°=160°.