题目内容
【题目】如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.
(1)求证:AE=DC;
(2)已知DC=,求BE的长.
【答案】(1)证明见试题解析;(2)2.
【解析】
试题(1)由矩形的性质及已知条件可得到△AEF≌△DCE,即可证明AE=DC;
(2)由(1)得到AE=DC,在Rt△ABE中由勾股定理可求得BE的长.
试题解析:(1)在矩形ABCD中,∠A=∠D=90°,∴∠1+∠2=90°,∵EF⊥EC,∴∠FEC=90°,∴∠2+∠3=90°,∴∠1=∠3,在△AEF和△DCE中,∵∠A=∠D,∠1=∠3,EF=EC,∴△AEF≌△DCE(AAS),∴AE=DC;
(2)由(1)得AE=DC,∴AE=DC=,在矩形ABCD中,AB=CD=,在R△ABE中,,即,∴BE=2.
练习册系列答案
相关题目
【题目】一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数 | 众数 | 中位数 | |
甲 | ______________ | 8 | 8 |
乙 | ______________ | 9 | ______________ |
(2)已知甲组学生成绩的方差,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.