题目内容

【题目】如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.

(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是4 ,tanα= ,求四边形OBEC的面积.

【答案】
(1)证明:∵菱形ABCD的对角线AC与BD相交于点O,

∴AC⊥BD,

∵BE∥AC,CE∥BD,

∴∠BOC=∠OCE=∠OBE=90°,

∴四边形OBEC是矩形;


(2)解:∵菱形ABCD的周长是4

∴AB=BC=AD=DC=

∵tanα=

∴设CO=x,则BO=2x,

∴x2+(2x)2=( 2

解得:x=

∴四边形OBEC的面积为: ×2 =4.


【解析】(1)利用菱形的对角线互相垂直结合平行线的性质得出∠BOC=∠OCE=∠OBE=90°,进而求出即可;(2)利用菱形的性质结合勾股定理得出CO,BO的长,进而求出四边形OBEC的面积.
【考点精析】利用菱形的性质和矩形的判定方法对题目进行判断即可得到答案,需要熟知菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网