题目内容

如图,在直角坐标系中,矩形OABC的顶点A、B在双曲线y=
k
x
(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),则点B的坐标为(  )
A.(3,
2
3
B.(4,
1
2
C.(
9
2
4
9
D.(5,
2
5

∵矩形OABC的顶点A、B在双曲线y=
k
x
( x>0)上,点A的坐标为(1,2),
∴2=
k
1

解得:k=2,
∴双曲线的解析式为:y=
2
x
,直线OA的解析式为:y=2x,
∵OA⊥AB,
∴设直线AB的解析式为:y=-
1
2
x+b,
∴2=-
1
2
×1+b,
解得:b=
5
2

∴直线AB的解析式为:y=-
1
2
x+
5
2

将直线AB与反比例函数联立得出:
y=
2
x
y=-
1
2
x+
5
2

解得:
x=4
y=
1
2
x=1
y=2

∴点B(4,
1
2
).
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网